Hindwings of insects as concept generator for hingeless foldable shading systems.
نویسندگان
چکیده
Hingeless shading systems inspired by nature are increasingly the focus of architectural research. In contrast to traditional systems, these compliant mechanisms can reduce the amount of maintenance-intensive parts and can easily be adapted to irregular, doubly curved, facade geometries. Previous mechanisms rely merely on the reversible material deformation of composite structures with almost homogeneous material properties. This leads to large actuation forces and an inherent conflict between the requirements of movement and the capacity to carry external loads. To enhance the performance of such systems, current research is directed at natural mechanisms with concentrated compliance and distinct hinge zones with high load-bearing capacity. Here, we provide insights into our biological findings and the development of a deployable structure inspired by the Flexagon model of hindwings of insects in general and the hierarchical structure of the wing cuticle of the shield bug (Graphosoma lineatum). By using technical fibre-reinforced plastics in combination with an elastomer foil, natural principles have been partially transferred into a multi-layered structure with locally adapted stiffness. Initial small prototypes have been produced in a vacuum-assisted hot press and sustain this functionality. Initial theoretical studies on test surfaces outline the advantages of these bio-inspired structures as deployable external shading systems for doubly curved facades.
منابع مشابه
Maximum Power Point Tracker for Photovoltaic Systems Based on Moth-Flame Optimization Considering Partial Shading Conditions
The performance of photovoltaic (PV) systems is highly dependent on environmental conditions. Due to probable changes in environmental conditions, the real-time control of PV systems is essential for exploiting their maximum possible power. This paper proposes a new method to track the maximum power point of PV systems using the moth-flame optimization algorithm. In this method, the PV DC-DC co...
متن کاملThe concept of logic entropy on D-posets
In this paper, a new invariant called {it logic entropy} for dynamical systems on a D-poset is introduced. Also, the {it conditional logical entropy} is defined and then some of its properties are studied. The invariance of the {it logic entropy} of a system under isomorphism is proved. At the end, the notion of an $ m $-generator of a dynamical system is introduced and a version of the Kolm...
متن کاملUnusual Phase Relationships between the Forewings and Hindwings in Flying Dragonflies
Flying insects can generally be divided into two groups: 'primitive' orders with forewings and hindwings that move independently (for example, Odonata, Orthoptera, Isoptera) and more 'advanced' orders with wings that are functionally one pair, with the foreand hindwings in contact so as to function as one wing (for example, Hymenoptera, Lepidoptera, Homoptera), or with only one pair of wings th...
متن کاملBeyond analogy: A model of bioinspiration for creative design
Is biologically inspired design only an analogical transfer from biology to engineering? Actually, nature does not always bring “hands-on” solutions that can be analogically applied in classic engineering. Then, what are the different operations that are involved in the bioinspiration process and what are the conditions allowing this process to produce a bioinspired design? In this paper we mod...
متن کاملNew Strategy of Grid Connected Photovoltaic System Using Module Integrated Converters with B4 Inverter to Overcome Partial Shading Effect
This paper proposes a new configuration for solar energy conversion systems. One challenging issue of the photovoltaic (PV) systems is partial shading, and in this paper Module Integrated Converters (MIC) are used to overcome this problem in PV arrays. A few boost converters are employed as MICs to mitigate the shading effect. Furthermore, to reduce the cost and to increase the system performan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinspiration & biomimetics
دوره شماره
صفحات -
تاریخ انتشار 2017